A deep learning-based method for ultra-short-term PV power prediction
نویسندگان
چکیده
Abstract With the rapid development of photovoltaic industry, application accuracy power prediction technology in field system control, dispatching and operation is more precise. Due to volatility randomness ultra short term, high-precision has theoretical practical significance. This paper presents an short-term model based on dual attention mechanism GRU, which realizes term. Firstly, introduced realize extraction temporal spatial features; Then, predicted by combining extracted features with characteristics GRU long-term memory ability fast calculation. The time series independently extract information historical key moments improve stability long-time effect; feature effectively calculates correlation each meteorological quantity, alters weight. Through comparison experiment baseline model, it verified that proposed higher accuracy, better generalization robustness.
منابع مشابه
A Deep Learning Framework for Short-term Power Load Forecasting
The scheduling and operation of power system becomes prominently complex and uncertain, especially with the penetration of distributed power. Load forecasting matters to the effective operation of power system. This paper proposes a novel deep learning framework to forecast the short-term grid load. First, the load data is processed by Box-Cox transformation, and two parameters (electricity pri...
متن کاملShort term electric load prediction based on deep neural network and wavelet transform and input selection
Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...
متن کاملMachine Learning Techniques for Short-Term Electric Power Demand Prediction
Since several years ago, power consumption forecast has attracted considerable attention from the scientific community. Although there exist several works that deal with this issue, it remains open. The good management of energy consumption in HVAC (Heating, Ventilation and Air Conditioning) systems for large households and public buildings may benefit from a sustainable development in terms of...
متن کاملAn Optimized Prediction Intervals Approach for Short Term PV Power Forecasting
High quality photovoltaic (PV) power prediction intervals (PIs) are essential to power system operation and planning. To improve the reliability and sharpness of PIs, in this paper, a new method is proposed, which involves the model uncertainties and noise uncertainties, and PIs are constructed with a two-step formulation. In the first step, the variance of model uncertainties is obtained by us...
متن کاملUltra-short-term Wind Power Prediction based on Chaos Phase Space Reconstruction and NWP
Wind power prediction accuracy is important for assessing the security and economy when wind power is connected to the grid, and wind speed is the key factor. This article presents a future four hours prediction scheme that combined chaos phase space reconstruction with NWP method. Historical wind speed data are reconstructed as phase space vectors, which are used as the first input part of pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of physics
سال: 2022
ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']
DOI: https://doi.org/10.1088/1742-6596/2260/1/012056